organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-Butylpyridine-4-thiocarboxamide

T. Kavitha,^a C. Revathi,^b M. Hemalatha,^b A. Dayalan^b and M. N. Ponnuswamv^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Chemistry, Loyola College (Autonomous), Chennai 600 034, India Correspondence e-mail: mnpsy2004@yahoo.com

Received 17 November 2007; accepted 22 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.120; data-to-parameter ratio = 17.9.

In the title molecule, $C_{10}H_{14}N_2S$, the *n*-butyl chain assumes a trans zigzag conformation. The dihedral angle between the pyridine ring and the thioamide plane is $23.38(8)^{\circ}$. The molecules in the crystal structure are linked by an intermolecular N-H···N hydrogen bond.

Related literature

For related literature, see: Allen et al. (1987); Klimsova et al. (1999); Ramachandran (2005); Vannelli et al. (2002); Desiraju (1989); Dodge et al. (2006).

Experimental

Crystal data

C10H14N2S V = 1070.78 (6) Å³ $M_r = 194.29$ Z = 4Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 8.0895 (3) Å $\mu = 0.26 \text{ mm}^{-1}$ b = 13.5947 (4) Å T = 293 (2) K c = 10.4936 (3) Å $0.26 \times 0.20 \times 0.20$ mm $\beta = 111.895 (2)^{\circ}$

Data collection

Bruker Kappa APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.935, \ T_{\max} = 0.949$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of
$wR(F^2) = 0.120$	independent and constrained
S = 1.06	refinement
2182 reflections	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
122 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$

11437 measured reflections

 $R_{\rm int} = 0.027$

2182 independent reflections

1744 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D - H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $N8\!-\!H8\!\cdot\cdot\cdot\!N1^i$ 0.859 (19) 2.182 (19) 3.033 (2) 171 (2)

Symmetry code: (i) $x, -y - \frac{1}{2}, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek. 2003): software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

AD, MH and CR are grateful to Rev. Fr A. Albert Muthumali S. J., Principal, Loyola College (Autonomous), Chennai, India, for providing the necessary facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2253).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2004). SAINT (Version 6.0a), APEX2 (Version 1.22) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. (1989). Materials Science Monographs, No. 54, Crystal Engineering - The Design of Organic Solids, edited by G. R. Desiraju, pp. 85-113. New York: Elsevier Science Publishers.
- Dodge, A. G., Richman, J. E., Johnson, G. & Wackett, L. P. (2006). Appl. Environm. Microbiol. 72, 7468-7476.
- Klimsova, V., Svoboda, M., Waiser, K., Pour, M. & Kaustova, J. (1999). Collect. Czech. Chem. Commn. 64, 417-434.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Ramachandran, K. L. (2005). Asian J. Chem. 17, 1559-1563.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Vannelli, T., Dykman, A. & Montellano, P. R. O. (2002). J. Biol. Chem. 277, 12824-12829.

supplementary materials

Acta Cryst. (2008). E64, o114 [doi:10.1107/S1600536807062125]

N-Butylpyridine-4-thiocarboxamide

T. Kavitha, C. Revathi, M. Hemalatha, A. Dayalan and M. N. Ponnuswamy

Comment

Drugs containing carbothioamide (–CSNH₂) functional groups are clinically effective for the treatment of *M. tuberculosis, M. leprae* and *M. avium* complex infections (Dodge *et al.*, 2006; Klimsova *et al.*, 1999). In general, the carbothioamide drugs are considered as second line drugs. The carbothioamide groups have significant effects in biological systems. Their use, especially as pyridine carbothioamides in the field of multi drug resistant systems, has increased a lot (Vannelli *et al.*, 2002). Depending on the position of the carbothioamide group at the pyridine ring and also depending on the nature of *N*-alkyl substitution at the thioamide, the pyridine carbothioamides have been found to play a vital role in their biological activities and drug action. We report here the crystal structure of a typical pyridinecarbothioamide, *viz.*, 4-(*N*-1-butylcarbothioamido) pyridine.

The pyridine ring is planar. The *n*-butyl amide group assumes an extended conformation $[C4-C7-N8-C9 = -178.06 (15)^\circ, C7-N8-C9-C10 = -168.50 (16)^\circ, N8-C9-C10-C11 = -178.86 (16)^\circ, C9-C10-C11-C12 = -171.50 (18)^\circ]$. The C=S bond length [1.6608 (16) Å] is comparable with the literature values (Allen *et al.*, 1987). The pyridine and thioamide planes orient at an angle of 23.38 (8)° to each other.

The sum of the bond angles around N8 is $359.94 (4)^{\circ}$ thus conforming sp^2 hybridized state of N atom. The molecules in the unit cell are stabilized by N—H…N (Desiraju, 1989) type of intermolecular interactions in addition to van der Waal's forces.

Experimental

About 5 g of 4- pyridinecarbonitrile was dissolved in 15 ml of ethanol. To this about 10 ml of 1-aminobutane was added and purified and H_2S gas was passed for 3 h. The yellow solid separate was filtered, washed with ethanol and dried in vacuum desicator (yield 80%) (Ramachandran, 2005).

Refinement

The H atom associated with N atom was located in a difference Fourier map and refined isotropically. Other H atoms were geometrically positioned (C—H = 0.93 - 0.97 Å) and treated as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing 20% probability displacement ellipsoids.

Fig. 2. A packing diagram, viewed approximately along the *a* axis. Dashed lines indicated N—H···N hydrogen bonds.

N-Butylpyridine-4-thiocarboxamide

Crystal data	
$C_{10}H_{14}N_2S$	$F_{000} = 416$
$M_r = 194.29$	$D_{\rm x} = 1.205 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2182 reflections
a = 8.0895 (3) Å	$\theta = 2.6 - 26.3^{\circ}$
b = 13.5947 (4) Å	$\mu = 0.26 \text{ mm}^{-1}$
c = 10.4936 (3) Å	T = 293 (2) K
$\beta = 111.895 \ (2)^{\circ}$	Block, brown
V = 1070.78 (6) Å ³	$0.26 \times 0.20 \times 0.20 \text{ mm}$
Z = 4	

Data collection

2182 independent reflections
1744 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.027$
$\theta_{\text{max}} = 26.3^{\circ}$
$\theta_{\min} = 2.6^{\circ}$
$h = -9 \rightarrow 10$
$k = -15 \rightarrow 16$
$l = -13 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.120$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0579P)^{2} + 0.2939P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{max} < 0.001$
2182 reflections	$\Delta \rho_{max} = 0.37 \text{ e } \text{\AA}^{-3}$
122 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods returned a structure invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
H8	0.753 (2)	-0.0813 (14)	0.501 (2)	0.055 (5)*
C2	0.6652 (3)	-0.27758 (12)	0.74847 (18)	0.0533 (4)
H2	0.5953	-0.3302	0.7016	0.064*
C3	0.6682 (2)	-0.19391 (12)	0.67438 (17)	0.0461 (4)
Н3	0.6041	-0.1917	0.5802	0.055*
C4	0.7670 (2)	-0.11385 (11)	0.74138 (15)	0.0406 (4)
C5	0.8613 (3)	-0.12389 (14)	0.88113 (18)	0.0561 (5)
H5	0.9304	-0.0721	0.9312	0.067*
C6	0.8525 (3)	-0.21036 (14)	0.94534 (19)	0.0606 (5)
H6	0.9185	-0.2154	1.0390	0.073*
C7	0.7739 (2)	-0.01937 (11)	0.67065 (17)	0.0446 (4)
C9	0.7746 (3)	0.06103 (12)	0.46367 (18)	0.0519 (4)
H9A	0.8954	0.0864	0.5005	0.062*
H9B	0.6965	0.1116	0.4748	0.062*
C10	0.7241 (3)	0.04039 (12)	0.31368 (18)	0.0514 (4)
H10A	0.6022	0.0168	0.2754	0.062*
H10B	0.8008	-0.0107	0.3017	0.062*

supplementary materials

C11	0.7414 (3)	0.13253 (14)	0.23755 (19)	0.0590 (5)
H11A	0.6797	0.1862	0.2618	0.071*
H11B	0.8663	0.1503	0.2673	0.071*
C12	0.6671 (4)	0.1204 (2)	0.0840 (2)	0.0914 (8)
H12A	0.6822	0.1806	0.0417	0.137*
H12B	0.5427	0.1046	0.0533	0.137*
H12C	0.7292	0.0683	0.0590	0.137*
N1	0.7559 (2)	-0.28736 (10)	0.88235 (15)	0.0544 (4)
N8	0.7638 (2)	-0.02581 (10)	0.54257 (14)	0.0450 (3)
S1	0.79203 (10)	0.08676 (3)	0.75316 (5)	0.0775 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C2	0.0742 (12)	0.0386 (9)	0.0445 (10)	-0.0106 (8)	0.0193 (9)	-0.0039 (7)
C3	0.0591 (10)	0.0420 (8)	0.0351 (8)	-0.0019 (7)	0.0152 (7)	-0.0010 (6)
C4	0.0507 (9)	0.0356 (8)	0.0393 (9)	-0.0011 (7)	0.0212 (7)	-0.0016 (6)
C5	0.0744 (13)	0.0482 (10)	0.0396 (9)	-0.0177 (9)	0.0143 (9)	-0.0047 (7)
C6	0.0829 (14)	0.0548 (11)	0.0359 (9)	-0.0104 (9)	0.0126 (9)	0.0045 (8)
C7	0.0563 (10)	0.0371 (8)	0.0420 (9)	-0.0009 (7)	0.0201 (8)	-0.0013 (6)
C9	0.0716 (12)	0.0354 (8)	0.0507 (10)	0.0021 (8)	0.0253 (9)	0.0062 (7)
C10	0.0649 (11)	0.0424 (9)	0.0485 (10)	0.0035 (8)	0.0228 (8)	0.0079 (7)
C11	0.0721 (13)	0.0510 (11)	0.0593 (12)	0.0064 (9)	0.0307 (10)	0.0166 (8)
C12	0.1018 (19)	0.107 (2)	0.0593 (14)	-0.0033 (15)	0.0234 (13)	0.0293 (13)
N1	0.0776 (11)	0.0426 (8)	0.0432 (8)	-0.0073 (7)	0.0227 (8)	0.0025 (6)
N8	0.0662 (9)	0.0316 (7)	0.0405 (7)	0.0033 (6)	0.0235 (7)	0.0021 (6)
S1	0.1429 (6)	0.0376 (3)	0.0602 (4)	-0.0080 (3)	0.0474 (4)	-0.0114 (2)

Geometric parameters (Å, °)

C2—N1	1.327 (2)	C9—C10	1.498 (2)
C2—C3	1.383 (2)	С9—Н9А	0.9700
С2—Н2	0.9300	С9—Н9В	0.9700
C3—C4	1.378 (2)	C10—C11	1.520 (2)
С3—Н3	0.9300	C10—H10A	0.9700
C4—C5	1.384 (2)	C10—H10B	0.9700
C4—C7	1.495 (2)	C11—C12	1.504 (3)
C5—C6	1.370 (3)	C11—H11A	0.9700
С5—Н5	0.9300	C11—H11B	0.9700
C6—N1	1.326 (2)	C12—H12A	0.9600
С6—Н6	0.9300	C12—H12B	0.9600
C7—N8	1.318 (2)	C12—H12C	0.9600
C7—S1	1.6608 (16)	N8—H8	0.86 (2)
C9—N8	1.463 (2)		
N1—C2—C3	123.97 (16)	Н9А—С9—Н9В	107.8
N1—C2—H2	118.0	C9—C10—C11	110.82 (15)
С3—С2—Н2	118.0	С9—С10—Н10А	109.5
C4—C3—C2	119.42 (15)	C11-C10-H10A	109.5

С4—С3—Н3	120.3	С9—С10—Н10В	109.5
С2—С3—Н3	120.3	C11-C10-H10B	109.5
C3—C4—C5	116.63 (15)	H10A—C10—H10B	108.1
C3—C4—C7	123.18 (14)	C12-C11-C10	113.24 (19)
C5—C4—C7	120.18 (15)	C12—C11—H11A	108.9
C6—C5—C4	119.76 (16)	C10-C11-H11A	108.9
С6—С5—Н5	120.1	C12-C11-H11B	108.9
С4—С5—Н5	120.1	C10-C11-H11B	108.9
N1—C6—C5	124.15 (17)	H11A—C11—H11B	107.7
N1—C6—H6	117.9	C11—C12—H12A	109.5
С5—С6—Н6	117.9	C11—C12—H12B	109.5
N8—C7—C4	116.70 (13)	H12A—C12—H12B	109.5
N8—C7—S1	123.30 (12)	C11—C12—H12C	109.5
C4—C7—S1	120.00 (12)	H12A—C12—H12C	109.5
N8—C9—C10	113.15 (14)	H12B—C12—H12C	109.5
N8—C9—H9A	108.9	C6—N1—C2	116.05 (15)
С10—С9—Н9А	108.9	C7—N8—C9	121.94 (14)
N8—C9—H9B	108.9	C7—N8—H8	122.2 (13)
С10—С9—Н9В	108.9	C9—N8—H8	115.8 (13)
N1—C2—C3—C4	-1.5 (3)	C5—C4—C7—S1	-33.5 (2)
C2—C3—C4—C5	1.2 (2)	N8—C9—C10—C11	-178.86 (16)
C2—C3—C4—C7	-178.13 (16)	C9-C10-C11-C12	-171.50 (18)
C3—C4—C5—C6	-0.1 (3)	C5-C6-N1-C2	0.6 (3)
C7—C4—C5—C6	179.24 (18)	C3—C2—N1—C6	0.6 (3)
C4—C5—C6—N1	-0.9 (3)	C4—C7—N8—C9	-178.06 (15)
C3—C4—C7—N8	-33.7 (2)	S1—C7—N8—C9	2.4 (3)
C5—C4—C7—N8	146.99 (17)	C10-C9-N8-C7	-168.50 (16)
C3—C4—C7—S1	145.88 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N8—H8…N1 ⁱ	0.859 (19)	2.182 (19)	3.033 (2)	171 (2)
Symmetry codes: (i) x , $-y-1/2$, $z-1/2$.				

H2

